
 
 
 
 
 
 

SECTION 8 

 
 Matter Waves  

 
MATTER WAVES AND SPHERICAL CENTERS OF OSCILLATION 

 The matter wave traveling right along with the particle is like a kind of standing wave  
relative to the particle.  A standing wave can be thought of as the sum result of two waves 
traveling in opposite directions through each other.  If the frequencies and wavelengths are 
different then their interaction produces a new frequency called a “beat”.  The development of the 
beat is as follows. 

 The two waves are 
(8-1) 

           
 
and the sum is 
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              which by using a trigonometric equivalence can be arranged as 
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 The cosine term frequency ½·[f1-f2] difference, is smaller than the sine term sum 
½·[f1+f2].  If the expression is viewed as the higher frequency sine portion with the rest of the 
expression being the amplitude, as in equation 6-8, then 
(8-3) 
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 The wave form appears as in Figure 8-1, below. 

 
 
 
 
 

Figure 8-1 

 The solid-line curve in Figure 8-1 is the overall wave form. The dotted line,  the 
envelope, is the varying amplitude. The overall wave form exhibits in the varying amplitude a 
periodic variation  called the beat. The beat is real, not merely an appearance. For example two 
sound tones heard simultaneously produce an audible beat that one can hear.  It is by listening to 
the beat that one tunes a piano or other musical instrument. 
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RESOLUTION OF THE “SPOOKY” PROBLEMS OF QUANTUM MECHANICS 
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 Matter waves are the beat that results from the Spherical-Center-of-Oscillation's forward 
and rearward oscillations interacting with each other. This develops as follows. For a center in 
motion at velocity v. 

(8-4)   λfwd = λv·(1 - v/c)         ffwd = c/λfwd 
        λrwd = λv·(1 + v/c)         frwd = c/λrwd 
 The beat frequency, using the "Varying Amplitude" portion of equation 6-8, substituting 
ffwd for f1 and frwd for  f2, and then using equation 6-9, is 

(8-5) 
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which is the matter wavelength as previously obtained per equation 6-1 (in which the mass must 
be relativistic mass, mv, of course).  Thus matter waves are the beat that results from the 
Spherical-Center-of-Oscillation's forward and rearward oscillations interacting with each other. 

 A moving center-of-oscillation as "seen" by an external observer appears as the waves 
propagated by the center in his direction appear. But, if one could, somehow, actually "see" the 
center itself pulsating as it does, the situation would be different. The interaction of the forward 
and rearward oscillations, which produce a beat at the matter wave frequency, are real. The effect 
is as follows (repeating the form of equations 6-6 through 6-8, which were for any general 
oscillation, but now using the oscillations of a center-of-oscillation in motion). 

 
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(8-6) 

            

       [Note: 1 - cos(x) ≡ 1 + cos(180° - x) 
                              ≡ 1 + sin[90°-(180° - x)] 
                              ≡ 1 + sin(x - 90°) 
            and the 90° phase is irrelevant, of course.] 
and the sum is 

(8-7)    1 2in 2 f t   Wave Sum A· 2 Sin 2 f t S   
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                     Which again by using a trigonometric equivalence can be arranged as 
 

 
              
 The cosine term is at a lesser frequency than the sine term. If the expression for the wave 
sum is viewed as the (higher frequency) sine portion with the rest of the expression being the 
amplitude, as in equation 6-13, then 

(8-8) 
 
 
 
 

 In the case of a Spherical-Center-of-Oscillation f1 = ffwd and f2 = frwd.   
Likewise, A is Uc, the center average amplitude, the oscillation being of the form           
Uc·[1 - Cos(2π·f·t)].   

 The wave form appears as in Figure 8-2, below, for the forward-rearward interaction and 
the matter wave beat of the center's pulsation as it would be "seen" from the side relative to its 
direction of motion.  Within the matter wave envelope is the center’s spherical oscillation 
modified by the matter wave beat. 
 

 

 

 

 
 

Figure 8-2 
The Forward-Rearward Pulsation of a Center in Motion 
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