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The paper Connecting Newton’s G With the Rest of Physics – Modern Newtonian Gravitation 
Resolving the Problem of “Big G’s” Value derived the value of the gravitation constant “Big G”, G of 
Newton’s Law of Gravitation, directly from other physics fundamental constants but left it to a 
subsequent paper to experimentally validate the derived G. The present paper performs that validation by 
examining various past experiments intended to measure “Big G”, in each case determining the 
acceleration, ag, as found per Einstein’s General Theory of Relativity versus per Modern Newtonian 
Gravitation for that case.  The ratio of those two times the reported measured “Big G” value yields a 
result identical to the G determined from  the derived formulation for G, within the error range of the 
reported measured “Big G” measurement.  That thus validates the correctness of the derived formulation 
for G. 

 The next important issue, what causes gravitation, how does the effect take place, is addressed 
and resolved in the paper The Mechanics of Gravitation – What It Is; How It Operates, which is available 
on the ResearchGate website at https://www.researchgate.net/profile/Roger_Ellman/info.    
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The Experimental Data Validation of Modern Newtonian Gravitation 
over General Relativity Gravitation  

 
Roger Ellman 

I – INTRODUCTION AND SUMMARY 

 The theory of gravitation presented by General Relativity [GR], although highly successful at 
treating phenomena resulting from gravitation, fails to obtain precise measurement of “Big G”, the 
Newtonian constant of gravitation, has failed to connect “Big G” to the rest of physic’s fundamental 
constants, proffers no cause or mechanism for the operation of gravitation, and consequently prevents any 
development of means of controlling or modifying gravitation. 

 The Modern Newtonian [MN] theory of gravitation overcomes all of those GR failures. 

 The difference between the two theories is in the interpretation of Newton’s formula for 
gravitational action, equation (1) below, specifically the interpretation of the 1/d2 . 
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 In GR the separation distance, d, between the gravitating objects’ masses, M and m, is the distance 
between the centers of the two.   

In MN each of the objects is composed of myriad particles, atoms, each of which performs 
equation (1) between itself and each of the particles in the other object, individually, one-on-one as an 
independent pair.  Each such pair has its particular separation distance.  The inverse separation distance 
squared, 1/d2, of equation (1) is the overall average of the myriad individual inverse separation distances 
squared, corrected to the vector component parallel to the centerline between the objects, Avg[1/d2]. 

To convert a measurement of “Big G” done using the GR version of equation (1) to the value 
that would have been obtained if the measurement had been done using the MN version of equation (1) 
it is only necessary to multiply the GR version measurement by the GR inverse separation distance 
squared, 1/d2, divided by the MN average of the squared inverse separation distances, Avg[1/d2]. 

The paper Connecting Newton’s G With the Rest of Physics – Resolving the Problem of “Big 
G’s” Value1 presents a formula for calculating “Big G” from other fundamental physics constants.  From 
that the correct value of “Big G” is 6.636,046,823 × 10-11 m3 kg-1 s-2.  In converting GR “Big G” 
measurements to MN the GR are not precise due to their various measurement errors so that those 
converted to MN per the above procedure will not arrive at the above precise “Big G” from fundamental 
constants but will deviate because their other measurement errors will still be present. 

The results of some such conversions, from GR to MN, are presented in Table I, below.  Note the 
variations in the “Corrected” values around the “Big G from fundamental constants”  6.636,046,823 × 
10-11 value.  The variations in the “Corrected” are caused by the original measurements’ variations. 

TABLE  I – SUMMARY OF TESTS RESULTS 
   All Data in SI Units:  meters, kilograms, seconds                                                                                                                                      * = × 10-11 

Measurement  Description of Experiment Year GR  1/D^2   MN  AvgD 
Gm as * 

Measured 
Corrected  G * 

Correct = 6.636,046,823   
Cavendish Sphere on sphere torsion balance, deflection 1798 18.90              20.355,903,3  6.754 6.272 
Rose Sphere on cylinder, off-set by angular acceleration 1969 33.029,464,1  33.243,545,7 6.674 6.631 
Luther Sphere on torsion pendulum, oscillation frequency 1982 202.359,259,3   203.647,993,0 6.672,6 6.630,4 
Bagley 1 Sphere on torsion pendulum, time-of-swing 1997 193.388,696,3  194.648,677,3 6.676,1 6.632,8 
Bagley 2 Sphere on torsion pendulum, time-of-swing 1997 204.919,773,9  206.216,007,9 6.678,4 6.636,4 
Gundlach  Sphere on cylinder, off-set by angular acceleration 2000 15.081,535,4  15.178,361,1 6.674,215 6.631,639 
Schlamminger  A Configuration of Cylinders, beam balance 2006 20.020,909,8  20.149,705,7 6.674,252 6.631,591 

Quinn  Cylinders torsion pendulum, average of fixed 
deflection and period of oscillation 2013 0.138,195,9  0.139,108,2 6.675,66 6.631,67 
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 The conclusion is that the cited paper and its formulation for “Big G” in terms of other 
fundamental physics constants is valid and correct.  That which GR could not produce has been produced 
and resolved by MN gravitation which consequently must supersede GR gravitation. 

 Further, this MN validation also “legitimizes” the Gravito-Electric Power Generation and the 
Gravitation Deflection Deep Space and Planet Surface Flying Vehicle Drive proposed in the paper 
Gravitational and Anti-Gravitational Applications2 which applications should be tested. 

II – ON THE THEORY OF MEASURING “BIG G” 

 There is only one universal correct value of “Big G”.  Except for various errors and inaccuracies 
in conducting the measurement every measurement must provide that exact same result.  While the 
gravitational acceleration or force acting between objects varies according to Newton’s Law that variation 
is due to varying values of the masses involved and the separation distance not the value of “Big G” 
which is a fixed constant. 

 But, in the MN conception of the operation of Newton’s Law the separation distance is not the 
simple distance between  the centers of the two gravitating masses; it is the average of the inverse square 
separations particle to particle, one on one, of all of the particles making up the masses. Therefore 
different configurations of the gravitating masses produce different gravitational acceleration and force 
for the same GR values of the masses with the same GR center to center separations. 

 Nevertheless, whatever the values of the masses are and whatever the configuration of their 
particles and whatever the resulting gravitational acceleration and force, the measurement of “Big G” 
must produce the same universal value.  Any deviations or discrepancies from the correct value can only 
be due to measurement errors and inaccuracies. 

 Consider two measurement alternatives both having the same masses acting and the same GR 
separation distance between the centers of those masses, but the configurations of the MN interacting 
particles making up the masses are different.  For example, alternative #1 is two spheres whereas 
alternative #2 is two cylinders.   

 It might be thought that the measured gravitational acceleration or force would be the same for 
the two alternatives because in the GR conception of Newton’s Law of Gravitation the two alternatives 
are identical, not a little different.  But regardless of the GR thinking, the actual measurements will be 
different because it is the MN gravitational action that operates, always. 

The MN average inverse square separation, Avg[1/d2], in the two alternatives must be at least a 

little different.  The MN difference in the two alternatives will produce accordingly different resulting 
gravitational acceleration or force which will result in accordingly different values for “Big G” calculated 
by GR.     

The formula for correcting those GR values of “Big G” to the MN values for the two alternatives 
results in the same value for “Big G” always. 

                              Spheres GR Measured “Big G”         GR Inverse Square Separation 
   Correct “Big G” =      Unknowingly Using                ×  ────────────────── 

                              Spheres MN Particles Action                Spheres MN  Avg[1/d2] 

                              Cylinders GR Measured “Big G”      GR Inverse Square Separation 
   Correct “Big G” =      Unknowingly Using                ×  ────────────────── 

                              Cylinders MN Particles Action            Cylinders MN  Avg[1/d2] 

In both alternatives the formula cancels out the GR 1/d2 [used to calculate “Big G” from the actually 
measured gravitational acceleration or force observed] replacing it with the [Avg[1/d2]] that was actually 
operating when the measurement was made. 
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 The problem in making this correction is to accurately calculate Avg[1/d2], that is to exactly 
reproduce the particle-by-particle, particle-to-particle, one-on-one action that actually operates in the 
Newtonian gravitational interaction, that actually operated in each experimental result to be converted.  

III –THE POINT-ON-POINT GRAVITATIONAL INTERACTION BETWEEN OBJECTS 

In this “Big G” Calculation, each of the particles in M is paired, one at a time, with every 
particle in m.  The particle-to-particle separation distance in their 3-dimensional space is determined from 
the 3-dimensional Law of Pythagoras.  That distance is then squared and its reciprocal taken producing 
the equivalent of gravitation’s 1/d2. corresponding to the contribution to fgrav of the particular particle 
pair of one particle of M interacting with one particle of m.  The components of this gravitational action 
that are perpendicular to the center-to-center line have no net effect because over all of the particle-to-
particle interactions and the symmetry of the configuration they cancel out.  Only the component of the 
gravitational action between two particles that is parallel to the center-to-center line is effective 
gravitation.  That component is evaluated by projecting the 3-dimensional line of each particle-to-particle 
interaction onto the center-to-center line. 

The average of the accumulation of all of these [MN] particle-to-particle results is then compared 
to the corresponding [GR] center-to-center results. 

 This calculation is part of the calculating of the particle-on-particle interactions between the 
particles of a “source” gravitating object and the “encountered” gravitating object the particles 
represented by approximating samples [dealing with “points” is impossible; there are an infinite number].  
The objects are deemed monolithic solids of purely one kind of particle.  The particles are expressed in 
terms of a set of 3 - dimensioning axes:  x, y, and z.   

The origin of those coordinates is at the center of the source object.  The coordinates are xs, ys, 
and zs designating individual points in the source object.   

For the purpose of referring to particles in the encountered object a secondary origin is taken at 
the center of that object and the coordinates there are xe, ye, and ze. 

The center-to-center (origin-to-origin) separation distance of the two objects is the distance D.  In 
terms of source dimensioning the origin of the encountered object is located at  xs = -D.  Any 
encountered coordinate designation is referred to the source dimensioning by adding “-D” to the xe 
dimension.  

The total particle-on-particle interaction is obtained by summing the individual contributions of 
each source point interacting with each encountered point.  The scanning process selects successive 
values of zs, each value representing a 2-dimensional “slice” of the source object.  The slice is then 
scanned into successive values of ys representing 1-dimensional lines making up the slice.  Each line is 
then scanned into successive values of xs representing 0-dimensional points making up the line. 

Each of those source points then interacts with each of the points of the encountered object 
selected by the same slice - line - point type of scanning process as used for the source object.  When the 
currently selected source point i, which is zsi, ysi xsi, has interacted with every one of the 
encountered object points successively one at a time then the scan proceeds to source point (i + 1) and 
its interaction with every one of the encountered object points. 

The entire process is extremely lengthy.  To shorten it, which corresponds to speeding it up, the 
portion of the process that is most used, the xe scan, is replaced by developing a formula that gives the 
same result as the xe scan it replaces.  This procedure has two advantages, the first being that 
calculating the effect of an entire line of points “in one fell swoop” is much faster than calculating that 
entire line one point at a time. 
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The second advantage is as follows.  There are an infinite number of points in a line and they 
cannot be individually addressed.  Rather the line must be divided into a number of sequential identical 
segments they being samples of the line.  The more segments the line is represented by the greater the 
precision of the samples accurately representing the line.  The replacement of xe sampling with “one fell 
swoop” calculation also produces the maximum precision.     

The same necessity for sampling applies to the succession of lines as the ye-variable 
progresses and to the succession of “slices” as the ze-variable progresses.  Therefore each sample 
“point” is actually a sample volume, a cuboid (or rectangular parallelepiped) of which the “point” is the 
location of the cuboid center and which cuboids all taken together are the volume of the  object.   

A spherical quadrant is each of four parts of a sphere divided by two planes at right angles to each 
other.  In the present 3-dimensional x, y, z coordinate system let the two planes be the x-y plane and the 
x-z plane as in the left figure below.  Taking advantage of the symmetry of the two spheres addressing 
each other along a line connecting their centers as in the right figure below, that center line their common 
x-axis, each sphere has four such quadrants and if the entire source sphere is scanned then, because of the 
symmetry, each of the encountered sphere’s four quadrants produces the same effect and only one of 
them need be scanned.  

 
 
 
            < Source 

 

 

          < Encountered 

 
 

   Quadrants Generation   Quadrants End View 

Figure 1 

Furthermore, the source sphere need be scanned in only one of its four quadrants, that involving 
+ys and +zs the other three quadrants then being selected by successively choosing –ys with +zs, –ys 
with –zs, and +ys with –zs.  

Finally because of the symmetry the interaction of Q1 with Qb is the same as Q1 with Qc so that 
only one of those two need be calculated, the result of that being doubled. 

The xe scan is for one single point of the source sphere, that is one single set of values for xs, 
ys, and zs.  It is for one single line parallel to the x-axis, that line for one single set of values of ye 
and ze, the scan replacing sampling values of xe with a single overall value for that line calculated by 
integration. 

The above simplification due to quadrants symmetry applies also to any non-spherical form so 
long as it is symmetrical relative to the x-axis. 

IV –X-SCAN INTEGRAL 

Developing the Integrand 

The quantity to be calculated is Avg[1/d2], by the accumulation of Incr [below] over the 
entire scan  as follows. 
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 Δx  [xs – xe + D] Δy  [ys – ye]     Δz  [zs – ze] 
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 i 2 2 22 2 2

xs xe D 1
Incr ·

x y zx y z

                     
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Let:     x  [X – xe]      K  Y + Z 

Then: 
 
  

3
2
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x
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   [x K]




In terms of the variable of integration, xe, [x below] and relative to its “encountered” origin the 
range of the xe scan excursion is:   

from  2 2Re ze ye   2    –R       to       2 2Re ze ye   2   +R 

but, the overall integration is in the source frame of reference and the range must so be.  Therefore, the 
range is from  [–R D]  to  [+R    D]. 

The integral is then: 

 3
2

R D

2R D

1 x
Incr · ·dx

2·R    [x K]

 

 


       

where for scanning a single encountered x-line for a single source point [at zs, ys, xs] the encountered ze 
and ye are constants.  The only variable is xe as x. 

 The above derivation assumes the spheres case as in Figure 1; however, the same general 
procedure applies to any form having the same x-axis symmetry.  The only modification needed is the 
range of the integration. 

Evaluating the Integral 

 To integrate a function containing [x2 + K]
3/2 the procedure is to make the substitution:   

 x2 + K = y2    from which:     x2 = y2 – K       and:      2x·dx = 2y·dy. 
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The above integrand then transforms as follows: 
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 2

The right hand expression of the integrand integrates as follows. 
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Reverting back through the substitution to a function of x: 

 3
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x 1
·dx
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But, this K = Y+ Z = Δy2 + Δz2 = [ys – ye]2 + [zs – ze]2 and is a constant relative to integrating on x. 

Further x is [xs – xe +  D] where xe is the variable and xs a constant; therefore: 
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V –SCANNING AND CALCULATING THE X-SCAN INTEGRAL 

 The remaining procedure is to calculate the above evaluated integral in conjunction with scanning 
the M and m objects.  Appendix B is a Basic Language program for performing the scanning and 
calculating the x-scan for each pair of particles selected. 
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Appendix A – Big  G  Calculation  Tests Summary of Tests Results 
 

Newton’s Law of Gravitation is                 .  That, with Law of Motion,  F = m·a, is                
Measurement  = which experiment  

g 2

M
a G·

d
   2 2

M M
F m · G· G·

d d

    

·m

D     = spheres center-to-center separation distance 

GR      = General Relativity calculation of gravitation, 1/d2  =  1/D2 

AvgD  = Calculated average of parallel-to-centerline-components of reciprocal separation distances squared is 1/d2. 

MN     = Modern Newtonian calculation of gravitation using AvgD 
Gm     = reported measured “Big G”    

Gc       = Gm · [GR/MN] = Gm · [1/D
2   /  AvgD] 

G from its relation to other fundamental constants  =  6.636,046,823 × 10-11 

SUMMARY OF TESTS RESULTS 
 All Data in SI Units:  meters, kilograms, seconds                                                                                                                                         * = × 10-11 

Measurement  Description of Experiment Year GR  1/D^2   MN  AvgD 
Gm as * 

Measured 
Corrected  G * 

Correct = 6.636,046,823      
Cavendish Sphere on sphere torsion balance, deflection 1798 18.90              20.355,903,3  6.754 6.272 
Rose Sphere on cylinder, off-set by angular acceleration 1969 33.029,464,1  33.243,545,7 6.674 6.631 
Luther Sphere on torsion pendulum, oscillation frequency 1982 202.359,259,3   203.647,993,0 6.672,6 6.630,4 
Bagley 1 Sphere on torsion pendulum, time-of-swing 1997 193.388,696,3  194.648,677,3 6.676,1 6.632,8 
Bagley 2 Sphere on torsion pendulum, time-of-swing 1997 204.919,773,9  206.216,007,9 6.678,4 6.636,4 
Gundlach  Sphere on cylinder, off-set by angular acceleration 2000 15.081,535,4  15.178,361,1 6.674,215 6.631,639 
Schlamminger  A Configuration of Cylinders, beam balance 2006 20.020,909,8  20.149,705,7 6.674,252 6.631,591 

Quinn  Cylinders torsion pendulum, average of fixed 
deflection and period of oscillation 2013 0.138,195,9  0.139,108,2 6.675,66 6.631,67 

 

Experiments Calculated 
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R. Rose et al, 1969, “Determination of the Gravitational Constant G” PRL (21) 12. 

G. Luther & W. Towler, 1982, “Redetermination of the Newtonian Gravitational Constant G” PRL (48) 3.  

C. Bagley & G. Luther, 1997, “Preliminary Results of a Determination of the Newtonian Constant of gravitation: …” PRL  (78) 16. 

J. Gundlach & S. Merkowitz, 2000, “Measurement of Newton’s Constant Using a Torsion Balance with Angular 
    Acceleration Feedback”, PRL (85) 14. 

St. Schlamminger et al, 2006, “Measurement of Newton’s Gravitational Constant”, Physical Review D of APS, 74  

T. Quinn et al, 2013, “Improved Determination of G Using Two Methods”, PRL 111, 1011021 (2013).. 

Experiments Not Calculated Because of Insufficient Dimensional Data 

P. Heyl, 1930, “A Redetermination of the Constant of Gravitation”, NIST Archives. 

P. Heyl & P. Chrzanowski, 1942, “A New Determination of the Constant of Gravitation”, NIST Archives. 

M. Fitzgerald & T. Armstrong, 1995, IEEE Archives. 

W. Michaelis et al, 1995, “A New Precise Determination of Newton’s Gravitational Constant”, Metrologia of  IOP. 

J. Schurr et al, 1998, “Gravitational Constant Measured by Means of a Beam Balance”, PRL of APS. 

F. Nolting et al, 1999,  “Determination of G by Means of a Beam Balance”, IEEE archives. 

T. Armstrong & M. Fitzgerald, 2003, “New Measurement of G Using the Measurements Standards Laboratory’s 
    Torsion Balance”, PRL of  APS.  

L- C Tu et al, 2010, “New Determination of the Gravitational Constant G with Time-of-Swing Method” Physical Review D 
     of     APS,  82 (022001) and J.Luo et al, 2009, “Determination of the Newtonian Gravitation Constant with Time of Swing 
     Method”. PRL 102, 240801. 

H. Parks & J. Fuller, 2010, “Simple Pendulum Determination of the Gravitational Constant”, PRL of APS. 
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Appendix B - A Sample Typical Basic Program File:  Luther.bas 
 This program is a sample typical of the programs used for calculating the various experiments.  It 
was prepared and run using the PowerBASIC Consol Compiler Integrated Development Environment 
(IDE) version 6.03 from PowerBASIC Inc. 

FUNCTION PBMAIN 
1 REM  BIG  G  INTEGRATION  CALCULATION  BASIC  PROGRAM 
       CONSOLE.PRINT "METHOD = SPHERE TO SPHERE" 
       CONSOLE.PRINT "EXPERIMENT = LUTHER" 
       CONSOLE.PRINT "" 
       CONSOLE.PRINT "START:  DATE =  "; DATE$, "     TIME = "; TIME$ 
       BD$ = DATE$ 
       BT$ = TIME$ 
10 REM OVERALL INITIALIZING 
       DIM COUNT AS DOUBLE 
       COUNT = 0 
       DIM AVGD AS DOUBLE 
       AVGD = 0 
       DIM N AS DOUBLE 
       N = 100 
20 REM OVERALL INPUTTING 
       DIM RS AS SINGLE 
       DIM RE AS DOUBLE 
       DIM SEPD AS DOUBLE 
       DIM GM AS DOUBLE 
       RS = 0.0508255 
       RE = 0.0029 
       SEPD = 0.07029727 
       GM = 6.6726E-11 
       DIM JS AS DOUBLE 
       DIM JE AS DOUBLE 
       JS = RS / N 
       JE = JS / 10 
30 REM INITIALIZE SOURCE SCAN - ZS CYCLE 
       DIM ZSF AS DOUBLE 
       ZSF = RS - JS / 2 
       DIM ZS AS DOUBLE 
       ZS = -JS/2 
40 REM START NEXT SOURCE Z CYCLE 
       ZS = ZS + JS 
50 REM INITIALIZE SOURCE Y CYCLE 
       DIM YSF AS DOUBLE 
       YSF = (SQR(RS^2 - ZS^2))-JS/2 
       DIM YS AS DOUBLE 
       YS = -JS/2 
55 REM DISPLAY 
       IF COUNT > 0 THEN 
            CONSOLE.PRINT "1 OVER  SEPD^2 = "; 1 / (SEPD ^ 2), "AVGD  = "; AVGD / COUNT 
            CONSOLE.PRINT "ZS = "; ZS, " OUT OF ZSF = "; ZSF 
            CONSOLE.PRINT " " 
       END IF 
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60 REM START NEXT SOURCE Y CYCLE 
       YS = YS + JS 
70 REM INITIALIZE SOURCE X CYCLE 
       DIM XSF AS DOUBLE 
       XSF = (SQR(RS^2 - ZS^2 - YS^2))-JS/2 
       DIM XS AS DOUBLE 
       XS = -(SQR(RS^2 - ZS^2 - YS^2))-JS/2 
80 REM START NEXT SOURCE X CYCLE 
       XS = XS + JS 
100 REM INITIALIZE ENCOUNTERED SCAN - ZE CYCLE 
       DIM ZEF AS DOUBLE 
       ZEF = RE - JE / 2 
       DIM ZE AS DOUBLE 
       ZE = -JE/2 
110 REM START NEXT ENCOUNTERED Z CYCLE 
       ZE = ZE + JE 
120 REM INITIALIZE ENCOUNTERED Y CYCLE 
       DIM YEF AS DOUBLE 
       YEF = (SQR(RE^2 - ZE^2))-JE/2 
       DIM YE AS DOUBLE 
       YE = -JE/2 
130 REM START NEXT ENCOUNTERED Y CYCLE 
       YE = YE + JE 
170 REM XE CALCULATION BY FORMULA 
       DIM CUMINCR AS DOUBLE 
       CUMINCR = 0 
       DIM RAD AS DOUBLE 
       RAD = (RE ^ 2 - ZE ^ 2) 
       IF RAD > YE ^ 2 THEN 
          RAD = SQR(RAD - YE ^ 2) 
       ELSE 
          RAD = 0 
          GOTO 200 
       END IF 
       DIM TAIL AS DOUBLE 
       TAIL = XS + SEPD + SEPD 
       DIM BALNC AS DOUBLE 
       BALNC = (YS - YE) ^ 2 + (ZS - ZE) ^ 2 
       DIM FIRST AS DOUBLE 
       FIRST = 1 / (2 * RAD) 
       DIM PIECEA AS DOUBLE 
       PIECEA = (RAD + TAIL) ^ 2 
       DIM SECOND AS DOUBLE 
       SECOND = 1 / SQR(PIECEA + BALNC) 
       DIM PIECEB AS DOUBLE 
       PIECEB = (-RAD + TAIL) ^ 2 
       DIM THIRD AS DOUBLE 
       THIRD = 1 / SQR(PIECEB + BALNC) 
       DIM CHG AS DOUBLE 
       CHG = ABS(FIRST * (THIRD - SECOND)) 
       CUMINCR = CUMINCR + CHG 
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       BALNC = (-YS - YE) ^ 2 + (ZS - ZE) ^ 2 
       SECOND = 1 / SQR(PIECEA + BALNC) 
       THIRD = 1 / SQR(PIECEB + BALNC) 
       CHG = ABS(FIRST * (THIRD - SECOND)) 
       CUMINCR = CUMINCR + CHG + CHG 
       BALNC = (-YS - YE) ^ 2 + (-ZS - ZE) ^ 2 
       SECOND = 1 / SQR(PIECEA + BALNC) 
       THIRD = 1 / SQR(PIECEB + BALNC) 
       CHG = ABS(FIRST * (THIRD - SECOND)) 
       CUMINCR = CUMINCR + CHG 
       AVGD = AVGD + CUMINCR 
       COUNT = COUNT + 1 
200 REM LOGIC FOR YE SCAN 
       IF YE < YEF THEN 
            GOTO 130 
       END IF 
202 REM EC FOR YE OVERRUN 
       DIM FRACT AS DOUBLE 
       FRACT = (YE - YEF)/JE 
       CHG = CUMINCR*FRACT 
       AVGD = AVGD - CHG 
204 REM LOGIC FOR ZE SCAN 
       IF (ABS(ZE)) < ZEF THEN 
            GOTO 110 
       END IF 
210 REM LOGIC FOR XS SCAN 
       IF (ABS(XS)) < XSF THEN 
            GOTO 80 
       END IF 
214 REM LOGIC FOR YS SCAN 
       IF (ABS(YS)) < YSF THEN 
          GOTO 60 
       END IF 
218 REM LOGIC FOR ZS SCAN 
       IF (ABS(ZS)) < ZSF THEN 
          GOTO 40 
       END IF 
230 REM FINAL RESULTS 
       AVGD = AVGD / COUNT 
       DIM WRONGD AS DOUBLE 
       WRONGD = 1 / SEPD ^ 2 
       DIM RATIO AS DOUBLE 
       RATIO = WRONGD / AVGD 
       DIM CORRECTG AS DOUBLE 
       CORRECTG = RATIO * GM 
240 REM  RESULTS DISPLAY 
       XPRINT ATTACH DEFAULT 
       XPRINT "METHOD = SPHERE TO SPHERE" 
       XPRINT "EXPERIMENT = ROSE" 
       XPRINT "" 
       XPRINT "RS = "; RS 
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       XPRINT "RE = "; RE 
       XPRINT "SEPD = "; SEPD 
       XPRINT "GM = "; GM 
       XPRINT "GR = GENERAL RELATIVITY     MN = MODERN NEWTON" 
       XPRINT "" 
       XPRINT "N = "; N 
       XPRINT "GR RECIPROCAL  SQUARED  X-COMPONENT  DISTANCE  =  "; WRONGD 
       XPRINT "MN RECIPROCAL  SQUARED  X-COMPONENT DISTANCE  =  "; AVGD 
       XPRINT "" 
       XPRINT "RATIO GR/MN  =  "; RATIO 
       XPRINT "" 
       XPRINT "CORRECTED G = "; CORRECTG 
       XPRINT "FORMULA   G = "+ STR$(6.636046823E-11) 
       XPRINT "" 
       CONSOLE.PRINT "GR = GENERAL RELATIVITY     MN = MODERN NEWTON" 
       CONSOLE.PRINT "" 
       CONSOLE.PRINT "N = "; N 
       CONSOLE.PRINT "GR RECIPROCAL  SQUARED  X-COMPONENT  DISTANCE  =  "; 
WRONGD 
       CONSOLE.PRINT "MN RECIPROCAL  SQUARED  X-COMPONENT DISTANCE  =  "; AVGD 
       CONSOLE.PRINT "" 
       CONSOLE.PRINT "RATIO GR/MN  =  "; RATIO 
       CONSOLE.PRINT "" 
       CONSOLE.PRINT "CORRECTED G = "; CORRECTG 
       CONSOLE.PRINT "" 
       FT$ = TIME$ 
       FD$ = DATE$ 
       XPRINT "START DATE WAS "; BD$; "     FINISH DATE WAS "; FD$ 
       XPRINT "START TIME WAS "; BT$; "     FINISH TIME WAS "; FT$ 
       XPRINT CLOSE 
       CONSOLE.WAITSTAT 
END FUNCTION 
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Appendix C –  Comparison  of  Parameters 
             All dimensions in meters. 
 

  Per Experiment Published Paper As These Calculations Run 
Test Variable Notes Value Value Notes 

Rose Rs 0.0508 0.0508  
 Re Equivalent Sphere1 0.0066 Per mathcad equivalent sphere. 
 SepD 

Large attraction less small repulsion +/- due 
to spheres acting on each side of small 
narrow rod- pendulum to net fixed deflection. 0.12 0.174 Per narrow rod pendulum +/- effect. 

 
Luther Rs 0.0508255 0.0508255  
 Re Equivalent Sphere 0.0029 Per mathcad equivalent sphere. 
 SepD 

Pendulum oscillates therefore SepD varies 
with pendulum oscillation. 

0.07029727 0.07029727  
 
Bagley 1 Rs 0.0508255 0.0508255  
 Re Equivalent Sphere 0.0029 Per mathcad equivalent sphere. 
 SepD 

Partially same set-up as in Luther 

0.0719092 0.0719092  
 
Bagley 2 Rs 0.0508255 0.0508255  
 Re Equivalent Sphere 0.0029 Per mathcad equivalent sphere. 
 SepD 

Partially same set-up as in Luther 

0.0698567 0.0698567  
 
Gundlach Rs 0.06245 0.06245  
 Re Equivalent Sphere 0.0104 Per mathcad equivalent sphere. 

 SepD 

Large attraction less small repulsion +/- due 
to spheres acting on each side of flat thin 
pendulum to net fixed deflection.  Anomalous 0.2575 * 

Per flat thin pendulum +/- effect. 
* & Comp for angle to centerline. 

 
Schlam’ger Ls 0.7 0.7  
 Le 0.077 0.077  
 Rs 0.523 0.523  
 Ri 0.050 0.050  
 Re 0.0225 0.02215  
 SepD 

Approximately half of the small encountered 
cylinder overlaps the larger by being inside 
at one end of its central cavity. Thus SepD is 
indeterminate as is the point-on-point action 
there. 

0.3465 0.22349 Evaluated to compensate overlap. 
 
Quinn Ls 0.115 0.115  
 Le 0.055 0.055  
 Rs 0.060 0.060  
 Re 0.0275 0.0275  

 SepD 

1. Test cylinders oscillate therefore SepD 
varies with oscillation. 
2. Large attraction less smaller repulsion +/- 
due to source cylinders acting opposite, and 
at an angle on each side of,  test cylinder. 

0.214 2.690 
Per “Notes” column 3 and below. 
 

 
[1]  Equivalent sphere is a sphere of the same total volume as the actual encountered test mass [and therefore it has the same number of interacting 
particles as the actual] and, to the extent possible, located with its center at the encountered test mass end of the actual SepD [producing the same 
average separation]. 



 
 
NOTES re QUINN 
 

In the Quinn experiment 4 larger field masses confront 4 smaller test masses as in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 Because the modeling for the Modern Newtonian Calculation is of one field mass acting on one test mass the model incorporates only the 
upper left field [source] mass.  the effect of the other 3 field masses and of the other 3 test masses, not shown, is to oppose, that is to reduce, the 
overall gravitational effect of the upper left field mass on its test mass. 

 The model of only one field mass accounts for that by a much greater value of SepD for the calculations. 
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