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A Concise and Direct Proof of “Fermat’s Last Theorem” 

by 

Roger Ellman 
Introduction 

      “Fermat's Last Theorem” states:  There can be no non-zero integer solution for n>2 to the equation 

(1)  an + bn = cn 

Step 1 

     Restate the problem as follows: 

            For x, i, n and f(x,i) all non-zero integers and i<x there  is  no solution  for n>2  to 

(2)  xn = [x-i]n + [f(x,i)]n   

      That is, make the following substitutions in equation(1): 

            xn = cn       [x-i]n = an       [f(x,i)]n = bn 

     Clearly there is no difficulty with the xn term nor the [x-i]n term.  Both are integers and perfect nth 

powers of integers.   

     The issue now is: 

 Can f(x,i) be a non-zero integer for n>2 and equation(2) still valid ? 

Step 2 

     The first constraint on bn is that it must be the difference of cn and an. 

(3)  bn = [f(x,i)]n                                      

                   = xn - [x-i]n     [from equation (2)] 

                   = xn - [xn - n·xn-1·i + ... ± in]   [binomial expansion] 

                   = n·xn-1·i - ... ± in 

Step 3 

     The second constraint on bn  is that  it must be a perfect nth power. 

(4)  bn = [x-j]n = [x-j]1·[x-j]2·[x-j]3· ··· ·[x-j]n       

            where:  b = x-j  (just as a = x-i) 
                        j is a non-zero integer, j<x 
Step 4 

     These two constraints are simultaneous.  They are for the same bn.  Therefore, the two expressions must be 

identical; they must always simultaneously deliver the same value of bn. 

     The order of equation (3) is one less than the order of equation (4).  To compare the two expressions as an 
identity their order must  be the same.  That is accomplished by removing one factor of b from each of equations 
(3) and (4), as follows. 

 



(5)  bn = n·xn-1·i - ... ± in                [equation (3)]                                   

          ┌             n-1┐ n·i i
   = ─  m·│xn-1 - ... ± ────│ ── ·
      m      └               n ┘ 
    └─┬─┘ └──────────┬──────────┘ 
      b              bn-1 

     The parameter m is necessary because the quantity, n·i, which factored out normalizes the expressing, is not 
necessarily equal to b. 

(6)  bn = [x-j]1 · [x-j]2···[x-j]n            [equation (4)]                                          

          └──┬──┘  └───────┬───────┘ 
             b           bn-1 

        = [x-j]1 · m·[[x-k]2·[x-k]3· ··· ·[x-k]n] 
             └──┬──┘ └──────────────┬───────────────┘ 
             b                  bn-1 

     The m here is for identity to be possible – for the coefficient of the xn-1 term in the two expressions to be 
able to be equal, when m1. 

Step 5 

     Now, equation (5) and equation (6) must yield the same value for bn for all values of x.  To establish that 

condition for convenience we will require, rather than the entire expressions, that  [bn-1/m] in each expression 

yield the same value for all values of x.   

     The two expressions are (using the binomial theorem expansion formula) as follows.   

In equation (5) 

(7)         [n-1]         [n-1][n-2]                in-1                

     xn-1 - ─────·xn-2i + ──────────·xn-3i2 - ... ± ────  
             2·1             3·2·1                    n  

In equation (6) 

(8)         [n-1]          [n-1][n-2]             

     xn-1 - ─────·xn-2k1 + ──────────·xn-3k2 - ... ± kn-1               
             +1               2·1 

     Equating the pair of terms of zero order in equations (7) and (8): 

(9)    in-1                                                                               

      ────  =   kn-1 
        n   

     k = i/[n-1]th root of n 

     The [n-1]th root of n is irrational for n>2.  [See Step 7, page 4].  Therefore, for n>2, k is irrational 
and b is irrational and cannot be an integer, which proves the theorem. 

Step 6 

     However, k in expression (8) is a function of x.  The only values of k that are able to make the expression 

for bn-1 in the horizontal bracket to the right in the second line of expression (6) actually be equal to bn-1 are 
as follows:  

 

 



(10)     ┌    n 1 ┐                                           ┌ b  ┐ /          k = │x - [n-1] │     [where b is also│───│   
         └    └n·i┘       ┘      a function of x] 

which can readily be verified by substitution, that is 

                      ┌    ┌──── ───────┐┐n-
                      │    ┌     ┐│ 

── k 1 
┌  ┐1/     

                   │    │    │ n │  [n-1]││ n·i  b
     m·[x-k]n-1 = ───·│x - │x - │───│       ││ 
                   b  │    │    n·i ││ │ │       

└   ┘                      │    └           ┘│ 
                      └                      ┘ 
                      ┌   ┐n-1 ┌  ┐1/     
                   ││ n │  [n-1]│       n n·i  b n·i    b
                = ───·││───│       │  =  ─── · n-1 ───  =  b
                   b  │ n·i │      b    n·i │ │       
                      └└   ┘       ┘ 

     The problem with k being a function of x is that the apparent terms of given orders of x and their 
coefficients are not necessarily as they appear in equation (8) when equation (9) is substituted for k in equation 
(8).  However, if the term coefficients experience no net change from the substitution, then the comparison of any 
pair of coefficients is valid even though k = f(x).  That is exactly the situation in the present case (and may 
relate to why the theorem withstood proof for three centuries) as follows. 

     The pattern can be developed with two examples. 

      Example #1:  n=2 
  
Equation Nr.                   Content 
 

(5)     bn = 2·x·i - i2  
     ┌ ┐            2·i         i  
              │ │    = ─── · m· x - -

      
 
m      └    2┘ 

 
(6)     bn = [x-j]·[x-j]  

        = [x-j] · m·[x-k] 
 
(7)                        [bn-1/m] = x - 

i/2 
 

(8)          [bn-1/m] = x - k 
 
(10)                    ┌   2 1/ ┐ ┌ b ┐ 1

      k = │x-    │ │───│
         └  └2·i┘   ┘ 

         ┌  2 1/ ┐ ┌2·x·i-i ┐ 1
       = │x-│────────│   │ 
         └  └  2·i   ┘   ┘ 
             = i/2 

 Substituting (10)                   ┌      ┐
        for the  k  in (8)            n-1  = x - i/2 │b /m│
        gives  (8)(7)                  └      ┘ 
 
 

      Example #2:  n=3 
  
Equation Nr.                   Content 

 
      (5)     bn = 3·x2·i - 3·x·i2 + i3 

           ┌ 2 ┐ 3·i                 i  
         = ─ 2 │ ── · m·│x  - x·i + ───
                                        m      └            3 ┘   

 



(6)                            bn = [x-j]·[x-j]·[x-j] 
 

                                    = [x-j] · m·[x-k]·[x-k] 
 
(7)                           [bn-1/m] = x

2 - x·i + i2/3 
 

(8)                           [bn-1/m] = x
2 - 2·k·x + k2 

 
 
(10)                                                                         ┌   3 1/ ┐ ┌ b ┐ 2
                                                                          k = │x-    │ │───│

                                    └  └3·i┘   ┘  

                                    ┌  2 2 3 1/ ┐  ┌3·x ·i-3·x·i +i ┐ 2
                                  = │x-    │  │────────────────│
                                     └  └      3·i       ┘   ┘ 
                                                                      1/   
                                  = x-[x2-x·i+i2/3]  

2 

Substituting (10)                                                 ┌     ┐
For the k in (8)    n-1  = x2 - x·i + i2/3                                                   │b /m│   gives (8)(7)                     └      ┘ 

     This pattern persists for all positive integer values of n.  Therefore,  the term coefficients experience no net 
change from the substitution and the comparison of any pair of coefficients is valid even though k = f(x).  
Therefore, equation (9) is valid and equation (9) shows that k, and therefore b, are irrational for n>2, which 
proves the theorem. 

Step 7 

Proof that the [n-1]th root of n is irrational. 

Trial calculations make clear that the numerical value of the [n-1]th root of n lies between 1 and 2 as follows. 

(11)  n   [n-1]th root of n                                               

      2   2 
      3   1.732… 
      4   1.607… 
      …     … 
     10   1.291… 
            109      1.000,000,020,7… 

Keeping in mind the significance of the positional notation used in representing numbers, the notation of a number 
such as 1.3, for example, means 1.3 = 1 × 100 + 3 × 10-1, the number at issue, the [n-1]th root of n being 
between 1 and 2 can then be represented as 

(12)  {[n-1]th root of n}  =   [ 1 × 100] + [a × 10-1] + [b × 10-2] + [c × 10-3] + …                              

                                       where the letters a, b, etc., represent a selection of one of the decimal digits 0 to 9. 

That number, the [n-1]th root of n, when multiplied by itself [n-1] times must yield the original number, n, 
an integer.  That is 

(13)  n = [[ 1 × 100] + [a × 10-1] + [b × 10-2] + [c × 10-3] + …][n-1]                                                      

But, examining what happens when a rational such number is raised to a power greater than one, it becomes clear 
that the result cannot be an integer. 

A rational number is one that can be expressed as the ratio of two integers.  Because ∞ is not a specific number but, 
rather the concept “large without limit”, the two integers of a rational number cannot be infinite.  Therefore, both of 
the integers whose ratio makes a rational number have a finite number of non-zero digits and the decimal number 
representation of the ratio has a finite number of non-zero digits. 

That is, a rational number has a finite number of non-zero digits to the right of its decimal point as compared to an 
irrational number, which has an infinite number of non-zero digits to the right of the decimal point.  The only 



exception to this distinction is the repeating decimal, which always is a rational number, but its infinite number of 
non-zero digits to the right of the decimal point is characterized by their repetition. 

Any rational number between 1 and 2 can then be represented as in equation (18). 

(18)  n =   1.ab … p0                                                   
           +0.00 … 0u  
           ────────── 
        =   1.ab … pu 

Where a, b, … p, u are decimal digits able to have value 0 through 9 except that u cannot be zero.  The 
digit p is the penultimate, the next to right-most digit and the digit u is the ultimate, the right-most non-zero 
digit. 

In the terms of equation (12) 

(19)  p is [p × 10-P]                                                               

      u is [u × 10-U] 

that is, p is in the Pth column to the right of the decimal point and u is in the Uth such column. 

The number n of equation (18) raised to a power can be expressed as 

(20)  nexp =[[1.ab … p0] + [0.00 … 0u]]exp                                                                           

           = [1.ab … p0]exp + exp·[1.ab … p0]exp-1·[0.00 … 0u] + … + [0.00 … 0u]exp 

The last term of equation (20) is the digit u raised to the exp power and positionally notated in the column 
corresponding to the value of its original column, 10-U, raised to the exp power, that is the 10-U·exp column. 

The digit u, by definition the right-most significant digit of the decimal number, cannot be zero.  That digit raised 
to any power produces a number the right-most digit of which is never zero, which can readily be verified by 
examining the decimal digits 1 through 9 raised from power 1 to successively higher powers. 

The net effect of all of this is that any non-integer rational number raised to any integer power greater than 1 can 
never yield an integer result.  There will always be at least the uexp “out there” in the 10-U·exp column providing 
a decimal fraction part of the result. 

But, that means that for n, an integer n>2, the [n-1]th root of n can never be an integer. 

Then, how can there be any non-integer roots of integers at all?  The answer is irrational numbers, of course.  
Consider how such numbers are able to operate.  An example of irrational roots producing integer powers is the 
square root of 3.  That root is 1.732,050,807,77 …, an irrational number which squared equals the integer 3.  
Picture the multiplication process as in equation (21), below 
 
(21)                  1.732,050,807,77 …                                

                    × 1.732,050,807,77 … 
                    ───────────────────── 
    Multiply by 1.    1.732,050,807,77 … 
    Multiply by 0.7   1.212,435,565,39 … 
    Multiply by 0.03  1.051,961,524,22 … 
        …    … 
     …    … 
    ─────────────────────────────────── 
    Sum of the above  3   exactly 

Speaking non-mathematically the result coming out to exactly 3 seems like a miracle – it certainly would seem 
highly improbable.  Yet,  that is what the infinite string of non-repeating digits to the right of the decimal point in all 
irrational numbers is capable of. 

Irrational numbers have a special power.  There is no end to their non-zero digits to the right of the decimal point – 
they go on and on.  They have no “right-most” digit. 
 



But, what about repeating decimals?  They appear to have an infinite string of digits to the right of the decimal point.   

Yet they are rational.  Repeating decimals do not really have an infinite string of digits to the right of the decimal 
point.   That appearance is pseudo.  It is a consequence of the number system in use.  We use the decimal system, 
most likely because evolution gave us 5 fingers on each of 2 hands. 

Consider, for example, the repeating decimal 0.333 … 1/3 .  That same numerical value, one item out of three, 
expressed in the number system using base 3 and the digits 0, 1, 2 is written 1/10 = 0.1 not a repeating 
decimal nor a repeating [number system base three].  Any repeating decimal expressed in a number system that uses 
as its base the number cycle that is repeated appears as an ordinary, not repeating, ”decimal” (number system base) 
in that number system. 

No number system is sacred or prime; only the numerical values involved are so.  True irrational numbers have an 
infinite string of digits to the right of the decimal point regardless of the number system in which they are expressed.  
The numerical value, itself, is that way.  And, that is so because a true irrational number’s digits have no cycle of 
repetition or, rather, that cycle extends to infinity and so cannot be repeated nor be a number system base. 
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